

Theoretical Investigation of the Optical Spectrum and the Gyromagnetic *g* Factor of CdS:V³⁺

Jia-Jun Chen^{a, c}, Mao-Lu Du^{b, c}

^a Department of Physics, Sichuan Teachers College, Nanchong 637002, China

^b Department of Physics, Southwestern Institute for Nationalities, Chengdu 610041, China

^c CCAST (World Laboratory) P.O. Box 8730, Beijing 100080, China

Reprint requests to Prof. Dr. J.J.C.; E-mail: chenjjnc@nc-public.se.eninfo.net

Z. Naturforsch. **57a**, 745–748 (2002); received March 8, 2002

We present a covalence crystal field model based on a cluster approach for a 3d² ion in a T_d system, in which not only the effect of the difference between the t_{2g} and e_g orbit but also a two spin-orbit coupling parameter model for the *g* factor is included. The model is applied to the calculation of the optical spectrum of CdS:V³⁺ in the T_d system and the gyromagnetic factor in the trigonal system. The calculated results agree well with experimental findings.

PACS: 61.16; 76.30Fc; 71.70C;

Key words: Crystal- and Ligand-field Theory; Optical Spectrum; Gyromagnetic Factor; CdS:V³⁺.